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Abstract
A general theoretical description of polarization transfer processes in multi-
spin systems containing dipole as well as quadrupole spins is formulated on
the background of the Liouville–von Neumann equation. The density operator
formalism is used to describe the evolution of an arbitrary spin system due to
quadrupole, Zeeman and dipole–dipole interactions. This approach is applied
to interpret previously published 1H–14N cross-relaxation NMR experiments
for measuring the 14N quadrupole coupling constants of paranitrotoluene (PNT)
and trinitrotoluene (TNT) (Nolte et al 2002 J. Phys. D: Appl. Phys. 35 939) and
new experiments on urea and urotropine. It is demonstrated that according to
the complexity of the analysed spin system an appropriate number of spins has
to be taken into consideration for a correct description of the cross-relaxation
spectra. The work is a part of an extended project aiming for a method which
should permit detection of TNT explosive in anti-personnel landmines.

1. Introduction

Zero-field NQR detection of 14N in metal free anti-personal landmines has made some progress
as long as its quadrupole frequencies are sufficiently large (3–5 MHz). This is the case when
nitrogen is contained within the aromatic ring. For instance, it has been reported that some
50 g of the explosive hexogen (RDX) have been successfully detected by zero-field NQR just
using a surface rf coil [2]. However, despite strong efforts [3], one of the explosives intensively
used in landmines, trinitrotoluene (TNT), has not been detected by zero-field NQR due to its
small quadrupole frequencies of less than 900 kHz.
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The present work largely refers to a previous paper [1], which presented 1H–14N
cross-relaxation (CR) NMR spectra obtained by electronical field cycling spectroscopy on
paranitrotoluene (PNT) and trinitrotoluene (TNT). It had been demonstrated that this method
is very sensitive for detecting e.g. the TNT NQR spectrum. Thereby, this detection scheme
may provide a useful perspective for developing a modified NQR probe for TNT-containing
metal-free anti-personnel landmines.

A qualitative interpretation, already given in [1], attributed observed dips in a 1H CR
spectrum to matching of Zeeman energy splitting for protons with some energy splitting for
nitrogen spins. The polarization transfer from a 1H spin to a neighbouring 14N spin is caused by
the mutual dipole–dipole coupling [4, 5]. The present paper is meant to propose a quantitative
analysis of the observed CR spectra on a background of the Liouville–von Neumann equation.
The time development of the spin density operator for a multi-spin system under the influence of
Zeeman, electrical quadrupole and magnetic dipole interactions is considered. The approach
is used to make a detailed re-interpretation of the data for PNT and TNT and also of new
experimental results on some more nitrogen-containing molecular crystals, namely urea and
urotropine. We provide in this work a tool for analysis and interpretation of CR experiments
for an arbitrary spin system, linking the efficiency of polarization transfer effects to molecular
geometry.

This theory oriented paper is organized such that after a short account of the experimental
procedure (section 2), the density operator formalism is reviewed in some detail in the section 3.
The application of this treatment to our previous experimental CR results on PNT and TNT
as well as to our new data on urea and urotropine is presented in section 4. Section 5 is
devoted to a discussion of problems relevant for magnetization transfer processes, like effects
of non-equivalent spins involved in polarization transfers within one molecule, a possible
polarization transfer to neighbouring molecules and relaxation dynamics of the quadrupole as
well as dipolar spins.

For simplicity we use from now on the symbol H instead of 1H and the symbol N instead
of 14N to denote the proton and nitrogen spins, respectively.

2. H–N cross-relaxation experiments

Details of the cross-relaxation experiments have been given in [1], so we present only a very
short summary here. The experiments were performed using a fast-field-cycling spectrometer.
A magnetic field (of about 0.7 T) was applied in a preparation period to polarize the proton
spins. Next, the magnetic field is reduced to a low cross-relaxation field, BCR, which is varied
for searching for H–N polarization transfer effects. After switching to a detection field (of about
1 T), the remaining proton magnetization is recorded. The timing diagram of the experiment
is presented in figure 1 of [1].

3. Theory of polarization transfer effects for H–N spin systems

This section is devoted to a straightforward theoretical description of polarization
transfer effects appropriate to a subsequent treatment for the series of spin systems H–N,
H–N–H, N–H–N and N–H–N–H–N, linking the efficiency of the cross-relaxation processes
to the structure of the investigated molecules. We discuss single- as well as double-quantum
mechanisms of the proton polarization transfer for systems containing several proton and
nitrogen spins. The description presented here can be treated as an extension of the approach
of [4] to an arbitrary molecular system containing spins I = 1/2 as well as quadrupole spins S.
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The dynamics of an ensemble of nuclear spins under a Hamiltonian H is governed by the
Liouville–von Neumann equation [4–8]:

d

dt
ρ(t) = −i[H, ρ(t)] (1)

where ρ(t) is the density operator for the considered quantum system. The Hamiltonian H
appropriate for the system containing NI proton spins, I = 1

2 , coupled to NS nitrogen spins,
S = 1, consists of Zeeman interactions with the static magnetic field (H I

Z and H S
Z for the

spins I and S, respectively) and internal spin interactions, i.e. quadrupole (H S
Q) interactions

for the spin S and dipole–dipole couplings (H I I
DD, H I S

DD, H SS
DD) between pairs of the spins:

H =
NI∑

i=1

H I
Z(Ii ) +

NS∑
j=1

H S
Z (Sj ) +

NS∑
j=1

H S
Q(Sj ) +

NI∑
i1,i2=1,i2<i1

H I I
DD(Ii1 , Ii2)

+
NI∑

i=1

NS∑
j=1

H I S
DD(Ii , Sj ) +

NS∑
j1, j2=1, j2< j1

H SS
DD(Sj1, Sj2). (2)

In the general case of several interactions, all the contributions to the total Hamiltonian
have to be considered in the same reference frame. For the purpose of describing the results
of our experiments performed in the laboratory frame (L), determined by the direction of the
external magnetic field, we choose the (L) coordinate system as the reference frame. The
Zeeman couplings for the spins I and S take in the laboratory frame the simple form

H P(L)
Z = γP B0 Pz P = I, S (3)

where γP is the appropriate gyromagnetic factor.
The quadrupole coupling, H S

Q, may be expressed in the (L) frame by a sum over products
of the components of two irreducible spherical tensors, in the following way [6–8]:

H S(L)
Q = 1

2

√
3
2 aS

Q

2∑
m=−2

(−1)m AS(L)
m T2,−m(S) (4)

where T2,−m(S) are components of the rank two spin tensor operator, T2,0(S) = 1√
6
[3S2

z −S(S+

1)], T2,±1(S) = ∓ 1
2 [Sz S± + S±Sz], T2,±2(S) = 1

2 S±S±. The quadrupole coupling constant aS
Q

for the spin S is defined as aS
Q = e2qS QS/h, where the symbols have their usual meaning.

The exact form of the space tensor elements AS
m depends upon the chosen reference frame it

is expressed in. For clarity of further considerations we define at this point a molecular frame,
denoted by (M). The molecular frame is a reference frame fixed on the molecule and may be
chosen arbitrarily. We chose as the molecular frame the principal axis system (PAS) of the
electric field gradient, (P) frame, for one of the spins S and denote this distinguished spin
as S1. Thus one can write (P1) = (M). Transformations of the tensor components ASi

m , [9],
from the PAS of the electric field gradient, (Pi ), for the spin Si to the laboratory frame occur
through two sets of Wigner rotation matrices:

ASi (L)
m =

2∑
n=−2

2∑
k=−2

A(Pi)
k D2

k,n(�Pi M )D
2
n,m(�ML). (5)

In the first step the tensor functions A(Pi )

k are transformed from the (Pi ) frame to the (M) frame
through the set of Euler angles �Pi M ≡ {αPi M , βPi M , γPi M}; in particular, for the spin S1 one
has�P1 M ≡ 0. The second transformation is performed between the molecular and laboratory
frames and expressed in terms of the Euler angles �ML ≡ {αML, βML, γML} common for all
spins Si and denoted from now as �ML ≡ �. For equivalent spins all the functions A(Pi)

k are
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the same, A(Pi )

k = A(P)k , and have the form A(P)0 = 1, A(P)±1 = 0, A(P)±2 = 1√
6
η where η is the

asymmetry parameter. The orientations of the Pi frames for the particular quadrupole couplings
of the Si spins with respect to the distinguishable molecular frame, P1, are determined by the
molecular geometry and are independent of the molecular orientation encoded in the angle�.

The dipole–dipole interactions being expressed by second rank tensors as well can be
treated in a similar manner. The I–S dipole–dipole Hamiltonian takes in the laboratory frame
the form [6–8]

H (L)
DD (I, S) = aI S

D

2∑
m=−2

(−1)m F I S(L)
m T2,−m(I, S). (6)

The components T2,−m(I, S) of the two-spin tensor operator have the form T2,0 = 1√
6
[2Iz Sz −

1
2 (I+S− + I−S+)], T2,±1 = ∓ 1

2 [Iz S± + I±Sz], T2,±2 = 1
2 I±S±, and the dipolar coupling constant

is defined as aI S
D = √

6 µ0

4π
γI γSh̄2

r3
I S

where rI S is the inter-spin distance; the other symbols have

their usual meaning. The relationship of the tensor components F I S(L)
m and F (DDI S)

k , defined
respectively in the laboratory frame and the frame determined by the dipole–dipole I–S axis,
(DDI S), can be obtained in a full analogy to the transformation of equation (5) via the molecular
co-ordinate system (M):

F I S(L)
m =

2∑
n=−2

2∑
k=−2

F (DDI S)

k D2
k,n(�DDI S M )D

2
n,m(�). (7)

The set of Euler angles �DDI S M ≡ {αDDI S M , βDDI S M , γDDI S M} describes the orientation of
the dipole–dipole co-ordinate system for the pair of interacting spins I–S with respect to
the molecular frame. Since for an arbitrary pair of spins one has F (DD)

0 = 1, F (DD)
±1,±2 = 0

equation (7) can be simplified to the form

F I S(L)
m =

2∑
n=−2

D2
0,n(0, θI S, ϕI S)D

2
n,m(�) (7a)

where the link between the Euler and the polar angles is employed: βDDI S M = θI S, γDDI S M =
ϕI S . The angles θI S and ϕI S associated with the I–S dipole–dipole coupling are also (in
analogy to�Pi M ) determined by the molecular geometry and remain unchanged for an arbitrary
molecular orientation. All the above considerations performed for a pair of spins Ii –Sj (H–N)
are fully applicable for the Ii –I j (H–H) and Si –Sj (N–N) dipole–dipole interactions.

The dipole–dipole interactions providing a coupling between the proton and nitrogen spins
are responsible for the H–N cross-relaxation effects. The efficiency of the proton polarization
transfer depends on the strength of the particular dipolar couplings,determined by the inter-spin
distances, rIi S j , and the molecular geometry entering the dipole–dipole Hamiltonians through
the Euler angles θIi S j , ϕIi S j .

We now turn to the Liouville description of spin dynamics. The expectation value of an
observable Q over the ensemble of spin systems described by a time-independent Hamiltonian
H can be obtained from the relation

〈Q(t)〉 = Tr{ρ(t)Q} =
N∑

r,s=1

ars exp{−iωrs t} (8)

with the amplitude ars given by

ars = 〈r |ρ(0)|s〉〈s|Q|r〉. (9)
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The coefficients ars are products of the elements of the observable, Qsr = 〈s|Q|r〉, and the
elements of the initial density operator, ρ(0)rs = 〈r |ρ(0)|s〉, both expressed in the eigenbasis
of the Hamiltonian H .

The strong magnetic field applied in the preparation period of the cross-relaxation
experiments determines the initial density operator, ρ(0), for the considered system. In the
limit of high temperature approximation, which is easy fulfilled at room temperature, the initial
equilibrium density operator is proportional to a combination of the Iz and Sz operators:

ρ(0) = 1

Z
exp

(
−

( NIi∑
i=1

H Ii
Z +

NS∑
j=1

H
S j

Z

)
/kBT

)
∝

NI∑
i=1

Iiz +
γS

γI

NS∑
j=1

Sjz .

The ensemble partition function is Z = (2I + 1)NI (2S + 1)NS , while kB is the Boltzmann
constant.

To obtain the eigenstates and the corresponding eigenvalues (energy levels) for the
considered system, one has to diagonalize the Hamiltonian of equation (2) with all the terms
expressed in the laboratory frame. We use for the diagonalization a matrix representation
of the Hamiltonian in the Zeeman basis set |n〉 = |mS1, . . . ,mSNS

,m I1 , . . . ,m INI
〉, where

mS j and m Ii are the magnetic quantum numbers for the nitrogen spin Sj and the proton
spin Ii , respectively. The role of the dipole–dipole interaction as the mechanism causing
the polarization transfer manifests itself clearly through the form of its matrix representation:
the dipole–dipole Hamiltonian provides a coupling between two sub-sets of the basis functions
corresponding to different values of the m I quantum number: �m I = ±1.

In the experiment the proton magnetization is detected, thus the observable Q refers
to a superposition of the operators Iiz . Using the representation of the eigenfunctions |ψr 〉
of the Hamiltonian H for a given molecular orientation � in terms of the Zeeman basis
functions |n〉:|ψr 〉 = ∑N

n=1 crn(�)|n〉 (N denotes the number of eigenstates), one can write
the expression for the set of coefficients ars(�) (equation (9)) in the form

ars(�)
∼=

N∑
n,m=1

{
〈n|I1z + · · · + INI z |m〉 +

γS

γI
〈n|S1z + · · · + SNS z|m〉

}
(c∗

r ncs m)(�)

×
N∑

n,m=1

〈m|I1z + · · · + INI z|n〉(c∗
s mcr n)(�). (10)

Thus the proton magnetization of molecules oriented with respect to the laboratory frame under
the angle � is given by

〈Iz(t)〉(�) ∼=
N∑

r,s=1

( N∑
n=1

〈n|I1z + · · · + INI z|n〉(c∗
rncsn)(�)

)2

exp(−iωrs t)

+
γS

γI

N∑
r,s=1

{( N∑
n=1

〈n|I1z + · · · + INI z |n〉(c∗
rncsn)(�)

)

×
( N∑

n=1

〈n|S1z + · · · + SNS z|n〉(c∗
rncsn)(�)

)}
exp(−iωrs t) (11)

where we have taken into account that the operators Iz and Sz are diagonal in the Zeeman
representation, such that one can set n = m. Since the Zeeman states with mS = 1 and −1
contribute in an equivalent manner to the eigenstates of the I–S system, the second term in
equation (11) vanishes. The transition frequencies, ωrs = Er − Es , are determined by the
eigenvalues Er , Es of the eigenstates |r〉, |s〉, respectively.
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The detected proton magnetization results as a sum of responses from molecules with
different orientations in the sample, thus in the last step one needs to perform an averaging over
all molecular orientations. The idea to introduce the molecular frame (M) as an intermediate
step for the transformations of the quadrupole and dipole–dipole interactions from their PAS
systems to the laboratory frame allows one to focus on only one set of Euler angles � in the
averaging procedure. The resulting proton magnetization 〈Iz(t)〉 = 〈Iz(t)〉(�) (the bar denotes
the averaging over molecular orientations) is affected by the molecular geometry through the
amplitudes ars determined by the interactions (quadrupole and dipole–dipole) as they depend
on internal molecular distances and angles.

Proton polarization is taken over by the nitrogen spins under certain conditions. Whenever
the transition energy of the proton spin I (essentially determined by its Zeeman interaction) is
equal to the transition energy of the nitrogen spin S (determined by the Zeeman and quadrupole
couplings), the dipole–dipole interaction, HDD(I, S), can cause polarization transfer processes.
The proton polarization is transferred through single-quantum transitions, |�m I | = 1,
associated with appropriate transitions of the nitrogen spin, �mS = −�m I . If more proton
spins, I1, I2, coupled to the nitrogen spin S, contribute to the polarization transfer, the proton
magnetization can be taken over not only through single-quantum transitions but also through
the double-quantum channel: �m I1 +�m I2 = −�mS = ±2. The presence of more nitrogen
spins increases the effectiveness of the magnetization transfer because more polarization
transfer pathways are available for the protons.

In the next section we apply this theoretical approach to interpretation of H–N cross-
relaxation experiments on a series of molecules: PNT, TNT, urea and urotropine5.

4. Analysis of experimental results

Two of the systems discussed below, PNT and TNT, have already been the subject of a previous
publication where the emphasis had been put on the experiment. Here, we start our analysis
from PNT and urea. We consider polarization transfer effects in these molecules on the
background of a three-spin (H–N–H) approach, sufficient to explain the modulation of the
proton magnetization due to single- and double-quantumtransitions. In the case of TNT, a five-
spin system (N–H–N–H–N) turns out to be necessary to explain the spectra. Finally, urotropine
stands for a case where an even larger number of coupled spins should be incorporated into the
description of the cross-relaxation processes, but we also consider the magnetization transfers
within a three-spin system (H–N–H), and discuss this simplification.

The molecules are treated as being isolated, i.e. we do not consider polarization transfers
to atoms of neighbouring molecules. In the analysis we focus attention on the most important
aspects of the polarization transfer processes: the single- and double-quantummechanisms and
the effects of including more proton as well as nitrogen spins participating in the magnetization
transfer. We treat the experimental data as a material for calculations illustrating our approach.

4.1. Paranitrotoluene (PNT)

The proton magnetization for PNT has been measured versus the cross-relaxation magnetic
field BCR for two durations of the cross-relaxation period tCR = 15 and 60 s, as presented
in [1]. The observed magnetization dips are created by single- as well as double-quantum
transitions.

One can distinguish in the PNT molecule three non-equivalent proton groups. The first
group, mainly involved in the proton–nitrogen polarization transfer, contains two proton spins

5 Experimental data of two of these systems, urea and urotropine, are presented for the first time.
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closest to the nitrogen. The second group also contains two protons, but more distant from the
nitrogen, while the third one corresponds to the methyl group protons.

To explain the polarization transfer we consider the H–N–H spin system, marked in
figure 1(c), consisting of the nitrogen spin S and the two closest proton spins I1 and I2.
According to section 3, the description of polarization transfer effects in a system containing
two proton spins and one nitrogen spin requires a Zeeman basis set consisting of 12 functions
formed as |n〉 = |mS,m I1 ,m I2 〉, where mS, m I1 and m I2 are the magnetic quantum numbers
of the particular spins. The Hamiltonian H contains the Zeeman couplings H I1

Z , H I2
Z , H S

Z ,
the quadrupole interaction H S

Q and the dipole–dipole couplings H I1 S
DD , H I2 S

DD , H I1 I2
DD , where

the last one is of minor importance for PNT molecules due to the relatively long distance
between the interacting proton spins. Energy level crossings, corresponding to the positions
of proton magnetization dips, appear for certain values of the magnetic field determined by the
parameters of the nitrogen quadrupole coupling. We have obtained from our model that the
positions of the detected magnetization dips correspond to the quadrupole coupling constant
aQ = e2q Q/h = 1.35 MHz and the asymmetry parameter η = 0.38. To visualize the
polarization transfer processes on the background of the transitions of the participating spins,
we present in figure 1(a) the energy level structure for the spin subsystem H–N. The energy
levels depend on the orientation of the molecular frame (the principal axis system of the
electric field gradient) relative to the laboratory frame. Figure 1(a) shows the energy levels for
the molecular orientation parallel to the external magnetic field (� = 0); the distribution of
molecular orientations causes a spread of the energy level crossings, reflected by widths of the
magnetization dips. The detected single-quantum dips occur due to the three transitions with
the energies indicated in figure 1(a). The presence of the second proton spin introduces the
double-quantum pathway for the proton magnetization transfer and explains the experimental
double-quantum dips. The appropriate energy level structure for the H–N–H spin system
(� = 0) is shown in figure 1(b), where the energies of single- and double-quantum processes
are indicated; three transitions also contribute to the double-quantum polarization transfer.
The energies of the transitions responsible for the single- as well as the double-quantum
polarization transfer agree with the positions of the experimental single- and double-quantum
magnetization dips. In figure 1(c) we present the experimental and theoretically predicted
proton magnetization as a function of the magnetic field. The efficiency of the polarization
transfer effects is linked to the molecular geometry. The calculations presented here have been
performed using the crystallographic data from [10]. The two proton–nitrogen distances are
equal, 2.65 and 2.57 Å; we have used the average value of 2.6 Å. The angle between the two
N–H dipole–dipole axes is 122◦. The z component of the nitrogen electric field gradient (EFG)
lies almost exactly along the C–N bond, while the y axis has been determined to lie essentially
normal to the plane of the NO2 group [11].

The polarization of the remaining proton spins is transferred to the nitrogen spin much
less effectively, because of the significantly larger H–N distances. In general, increasing the
number of proton spins contributing to the proton polarization relative to the number of nitrogen
spins leads to a decrease of the dip depths. The effects of the ratio between the proton and
nitrogen spins are clearly visible for the TNT molecule considered in section 4.3. We come
back to this issue in section 5, discussing it in connection with relaxation processes of the
participating spins.

4.2. Urea

The urea molecule contains two equivalent NH2 groups. We analyse the polarization transfer
processes within one of them. We consider the H–N–H systems of two protons coupled to
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Figure 1. (a) Energy level structure for the H–N subsystem of PNT molecules for the quadrupole
coupling constant aQ = 1.35 MHz and the asymmetry parameter η = 0.38; the relative orientation
of the principal axis system of the quadrupole coupling with respect to the laboratory frame is
given by � = 0. The positions of the energy level crossings correspond to the observed single-
quantum transitions for PNT (see (c)). (b) Energy level structure for the H–N–H spin system of
PNT: aQ = 1.35 MHz, η = 0.38; � = 0. Energy level crossings corresponding to single- and
double-quantum proton transitions are indicated by dashed lines (single quantum) and dotted lines
(double quantum). (c) Experimental and calculated proton magnetization as a function of the cross-
relaxation magnetic field BCR for PNT, tCR = 15 s. The theoretical prediction for the H–N–H spin
system (marked in the molecule diagram) is shown as a solid curve: aQ = 1.35 MHz, η = 0.38.
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Figure 2. Experimental and calculated proton magnetization as a function of the cross-relaxation
magnetic field BCR for urea (the H–N–H spin group is marked in the molecule diagram); squares—
experimental data for the cross-relaxation time tCR = 0.02 s. The theoretical prediction is shown as
a solid curve: aQ = 3.46 MHz, η = 0.29. The magnetic field range chosen for the cross-relaxation
experiment corresponds to single-quantum dips of the proton magnetization.

(This figure is in colour only in the electronic version)

single nitrogen. The experimental data for urea were collected in the range of the magnetic
field 45–80 mT, setting the cross-relaxation time tCR to 0.02 s, while the polarization time (the
preparation period) was set to 100 s. We have analysed the results in full analogy to the PNT
case, calculating the energy level structure and the magnetization development for the H–N–H
spin system, marked in figure 2. We have used in the calculations the proton–nitrogen distance
of 1 Å, and the HNH angle of 118.6◦ [12]. The calculations are performed for the electric field
gradient with the z axis along the symmetry axis of the NH2 group. The quadrupole coupling
parameters, aQ = e2q Q/h = 3.46 MHz and η = 0.29, reflect the positions of the observed
proton magnetization dips of the two single-quantum proton transitions. The parameters are
in a good agreement with [13] (aQ = 3.42 MHz, η = 0.32). The comparison between the
theoretical curve and the experiments is shown in figure 2.

4.3. Trinitrotoluene (TNT)

The results of the cross-relaxation experiment for TNT have also been presented in [1]. The
experiment has been performed for military-grade TNT from a granulated Yugoslav mine
sample. The most significant difference between the PNT and TNT data, pointed out in the
previous work [1] is the depth of the cross-relaxation dips being much more pronounced in
TNT as compared to PNT.

The result is caused by the presence of more nitrogen spins leading to a more efficient
proton magnetization transfer. In the first step we have analysed the H–N–H spin subsystem,
indicated in figure 3. The quadrupole coupling parameters aQ = e2q Q/h = 1.04 MHz
and η = 0.21 correspond to the positions of the experimental single- as well as double-
quantum dips. The theoretically predicted proton magnetization is presented together with
the experimental data in figure 3. In the next step we extend our analysis to the N–H–N–
H–N spin system, marked in the molecule diagram in figure 5. To illustrate the role of the
additional nitrogen spins we show in figure 4 the energy level structure for the N–H–N spin
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Figure 3. Calculated proton magnetization for the H–N–H subsystem of the TNT molecule (marked
in the molecule diagram): aQ = 1.04 MHz, η = 0.21—solid curve, and experimental results
obtained for the cross-relaxation time tCR = 8 s—squares.
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Figure 4. Energy level structure for the N–H–N subsystem of TNT molecules: aQ = 1.04 MHz,
η = 0.21; � = 0. Frequencies corresponding to single-quantum proton transitions are indicated.

subsystem, where two nitrogen spins participate in the transfer of the single-proton polarization.
The energy level structure explains the effects of more pronounced magnetization dips in
comparison to a system containing only one nitrogen spin. The fact that there are more nitrogen
spins contributing to taking over the proton magnetization manifests itself through the number
of energy level crossings (indicated in figure 4) providing the magnetization transfer channels.
Figure 5 shows the experimental data and the calculated proton magnetization (corresponding
to the quadrupole parameters aQ = 1.037 MHz and η = 0.21) for the N–H–N–H–N parts
of the TNT molecules, including all the spins marked in the molecule diagram (figure 5).
The dotted line in figure 5 shows predictions of the present description linking the shape of
the proton magnetization curve to the geometry of the investigated molecule. Performing the
detailed calculations for the H–N–H (figure 3) and N–H–N–H–N parts of the TNT molecule
we use the geometrical parameters from [14]. We have used the N–H distance of 2.5 Å. The
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Figure 5. Experimental and calculated proton magnetization as a function of the cross-relaxation
magnetic field BCR for the N–H–N–H–N part of the TNT molecule (marked in the molecule
diagram); squares—experimental data for the cross-relaxation time tCR = 8 s. The theoretical
prediction is shown as a dotted curve: aQ = 1.04 MHz η = 0.21. The solid curve presents an
overlapping of six curves corresponding to six pairs of quadrupole coupling parameters (given in
the text) for TNT—solid curve.

angles between the dipole–dipole axes corresponding to the couplings of a given nitrogen spin
to the two neighbouring protons lie between 117.5◦ and 125.5◦. The orientation of the electric
field gradient in the nitro groups is described in section 4.1.

The nitrogen NQR frequencies, quadrupole coupling constants and asymmetry parameters
of military-grade TNT at room temperatures have been investigated and presented in [15].
According to this work, one can distinguish six positions of the nitrogen nuclei, characterized
by the following pairs of parameters (aQ [MHz], η): (1.056, 0.303), (1.087 MHz, 0.170),
(1.064, 0.208), (1.045, 0.253), (1.068, 0.172) and (1.052, 0.179). In figure 5 we also present
the theoretical proton magnetization development resulting from a superposition of these six
contributions, concluding that the agreement with the experimental data is reasonable.

The experimental magnetization curves also exhibit small dips around 13 and 33 mT,
visible in figures 3 and 5. In [1] they have been attributed to lattice defects or eventually to
impurities. They cannot be reproduced on the background of our model, taking into account
the TNT molecular geometry.

The proton spins of the methyl group, omitted in the above considerations, also require
some attention. We shift this discussion to section 5.

4.4. Urotropine

The structure of urotropine molecules C6H12N4 requires taking into account a large ensemble
of spins to describe properly the polarization transfer mechanisms. The experimental data
for urotropine are collected in the range of the cross-relaxation magnetic field 60–95 mT,
corresponding to single-quantum proton transitions. For the purpose of extracting information
about the static quadrupole interaction from the experimental data we have limited ourselves
to the H–N–H part of the molecule. We have used in our analysis the crystallographic data
for urotropine from [16, 17], setting the proton–nitrogen distance to 1.8 Å. In the context
of the highly simplified treatment of the urotropine molecule we have set the electric field
gradient tensor parallel to the external magnetic field. The quadrupole coupling parameters
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Figure 6. Proton magnetization for urotropine measured as a function of the cross-relaxation
magnetic field BCR, tCR = 0.5 s (the group of spins H–N–H taken into account is marked in
the molecule diagram). The theoretical prediction is shown as a solid curve: aQ = 4.43 MHz,
η = 0.04. In the magnetic field range chosen for the cross-relaxation experiment the proton
magnetization transfer occurs through single-quantum proton transitions.

aQ = 4.43 MHz and η = 0.04 correspond to the positions of the detected single-quantum dips
and are in agreement with [14]: (aQ = 4.42 MHz). The theoretical proton magnetization is
compared with the experimental data in figure 6.

We wish to stress clearly that taking into account only the H–N–H spin system in our
interpretation of the cross-relaxation experiments for urotropine is an oversimplification caused
by computational limitations. However, the quadrupole coupling parameters obtained from the
analysis of the H–N–H subsystems are valuable, reflecting the frequencies of the proton single-
quantum transitions, which remain unchanged even if more spins contribute to the polarization
transfer effects.

In the next section we discuss effects of non-equivalent spins involved in polarization
transfers within one molecule (this subject has only been mentioned in the context of PNT
and TNT) as well as a possible polarization transfer to neighbouring molecules. Some caution
must be also exercised regarding field dependent relaxation processes in multi-spin systems,
relevant for magnetization transfers.

5. Discussion

The presented approach provides a tool for a detailed understanding and analysis of polarization
transfer processes in multi-spin systems containing spins 1/2 as well as quadrupole spins. We
have discussed the single- and double-quantum mechanisms of the polarization transfer as
well as the effects of more spins participating in this process, using as an example a series of
systems containing proton and nitrogen spins.

However, computational limitations of this approach should be emphasized. To analyse
magnetization transfers between dipolar and quadrupole spins, one has to specify the group
of spins involved in the magnetization transfer processes and relatively good isolated from
the molecular environment. Since the number of spins which one can take into account is
limited, it becomes a difficult task to extract an appropriate ensemble of spins. Choosing
a group of spins relevant for an analysis of polarization transfers in molecular crystals, one
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should try to find some compromises between the number of spins and the importance of
information which one expects to get by enlarging the spin. In the illustrative calculations
presented in section 4, we focus our attention on the physical mechanisms of magnetization
transfer processes. To discuss the spin transitions leading to the formation of magnetization
dips we treat the molecules as being isolated, i.e. we do not consider polarization transfers
to atoms of neighbouring molecules. Actually, the ‘single-molecule’ approximation is well
motivated for the considered systems and gives us a reasonable picture of the magnetization
transfer. For PNT, the distance between the proton spins (which are involved in the intra-
molecular polarization transfer) and nitrogen spins belonging to neighbouring molecules is
3.6–3.7 Å [10]. This value is larger than the inter-molecular proton–nitrogen distance. In the
urea crystal lattice, molecules are linked together by hydrogen bonds, with the O–H distance
between neighbouring ribbons of 2 Å [16]. According to [13] one can distinguish monoclinic
and orthorhombic forms of TNT crystals. The relevant proton–nitrogen distances between
neighbouring molecules are about 3.1 to 3.2 Å, while the inter-molecular distance is of 2.5 Å.

The methyl protons in the PNT and TNT molecules also require some comments. In
general, an increase of the number of protons relative to nitrogens leads to a decrease of the
observed magnetization dips. In the TNT molecule the distances between the protons of the
methyl group and the closest nitrogen spins (2.7 Å) are comparable to the H–N distances for
the ‘ring’ proton spins. For the PNT molecule the methyl proton–nitrogen distances are much
longer. We have not included the methyl protons in our analysis. One can expect that they
exhibit significantly faster relaxation than the other protons, such that they lose the polarization
mainly due to their relaxation. Fast dynamics of methyl groups has been discussed intensively
in the literature, for example [18–21]. Since the applied cross-relaxation times are long (8 and
15 s), the assumption that the proton polarization of the methyl group is lost due to spin–lattice
relaxation processes is well motivated. However, we cannot provide the relevant relaxation
times. The relatively good agreement between the theoretical predictions and the experimental
data can also be treated as a confirmation of this assumption.

The PNT molecule also possesses two protons more distant from the nitrogen; they
are neglected in our consideration. The magnetization of the second-group protons can
be effectively taken over neither by the nitrogen spin belonging to the same molecule nor
nitrogen spins of neighbouring molecules; the relevant proton–nitrogen distances are too large.
However, the magnetization could also be lost due to relaxation caused by the dipole–dipole
coupling of the second-group proton spins to the methyl protons. The mutual dipole–dipole
couplings are influenced by the fast dynamics of the methyl protons.

Urotropine is an example of a rather complicated system. The considered group of
spins (H–N–H) does not reflect the ratio between the number of proton and nitrogen spins
in urotropine molecules. Taking into account a third proton spin for keeping the proper ratio
between proton and nitrogen spins does not solve the problem of selecting an appropriate spin
group for the analysis of the polarization transfer, since such a spin group cannot be treated as
being well isolated in the molecule.

Some comments concerning relaxation processes relevant for the discussion of polarization
transfer effects are also appropriate here. So far, relaxation processes are not included in our
considerations. The proton polarization can be transferred to nitrogen if there is an efficient
static proton–nitrogen dipole–dipole coupling. The requirement that the mutual dipole–dipole
interaction is sensed by the participating spins as being time independent means that eventual
motional modulations of the relevant dipole–dipole coupling must be significantly slower
than the proton as well as nitrogen spin relaxation. However, the quadrupole spin can exhibit a
complex, field dependent multiexponential relaxation,caused by fluctuations of the quadrupole
coupling. This complicated issue is beyond the scope of the present paper. Field dependent
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relaxation processes of high spins have been considered in detail in the context of an electron
spin in [22]. The proton spins can in turn relax through dipole–dipole couplings to other proton
spins in their environment, if the mutual dipole–dipole couplings are modulated fast enough
by the lattice dynamics. It is important to realize that the fast fluctuations of proton–nitrogen
dipole–dipole couplings can also provide a source of relaxation for both spins. However, if
they are efficient for the relaxation processes due to their fast time modulations, they are not
active in the polarization transfer processes.

The observed proton magnetization dips are modulated in a complicated manner by
relaxation of the nitrogen as well as proton spins. The effects become visible especially if
comparing results of the cross-relaxation experiments performed for different cross-relaxation
times tCR. An interplay between various relaxation channels can lead to interesting features
of the magnetization curves. Performing the cross-relaxation experiment for urotropine we
varied the cross-relaxation time tCR, observing a significant effect on the dip shapes. To present
in figure 6 the agreement between the theoretical positions of the CR dips (predicted for the
given aQ and η) and the experimental ones, we used intentionally the set of data where the
observed dip depths fit to the theoretical ones obtained for the H–N–H subsystem, neglecting
relaxation.

However, we think that cross-relaxation experiments performed for various tCR from the
point of view of protons as well as quadrupole spins together with field-dependent proton and
quadrupole relaxation studies can provide a deep understanding of lattice dynamics and spin
interactions, so it might be worthwhile to discuss the combined effects in a forthcoming paper.

6. Conclusions

This paper provides a theoretical tool for a detailed understanding and analysis of cross-
relaxation experiments in multi-spin systems containing spins 1/2 as well as quadrupole
spins. The proposed approach links the efficiency of polarization transfer effects to molecular
geometry. It can be adapted to an arbitrary molecular system in a straightforward manner. We
discuss single- as well as double-quantum mechanisms of the proton polarization transfer for
systems containing several proton and nitrogen spins. Illustrative calculations are presented for
the series of spin systems H–N, H–N–H, N–H–N and H–N–H–N–H, involved in magnetization
transfer processes in PNT, TNT, urea and urotropine molecules.
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